If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2-19t-70=0
a = 4.9; b = -19; c = -70;
Δ = b2-4ac
Δ = -192-4·4.9·(-70)
Δ = 1733
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-\sqrt{1733}}{2*4.9}=\frac{19-\sqrt{1733}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+\sqrt{1733}}{2*4.9}=\frac{19+\sqrt{1733}}{9.8} $
| 5y+10y=15 | | n2+13=75 | | 39.95x0.99=55.79 | | 8.6x=0.5 | | -2/5x+1=7 | | c+1/3=21 | | x^2+12x-112=0 | | 12w+11=4 | | 3r+4+4=-10-3r | | h=22-h=0 | | -18-14v=-2(v+4) | | 3x-12/5=9 | | v-2=4v+13 | | 5n+4n=0 | | 1/5x=212 | | 3(2x+2)=-5(5x-5)+4x | | 8.6^2=4.3^2+x^2 | | 3(x/4+1/4)=2x-3 | | 2(5x+2)=-5(3x-2) | | 3x-4=x(1/2)+6 | | 2^2x=26 | | 4((-4x)=-16 | | 16/20=2x/4 | | 2/4=w-2/4 | | 7x-22=36 | | -5(x+1)-3=-38 | | x^2+6x=X) | | 2(x^2)-5x-3=0 | | 0.10(y-4)+0.14=0.08-0.6 | | 4(x-3)-16=-20 | | 16x^2-48+36=0 | | -8(5x-6)=-192 |